
Reuse existing C code with the Android NDK
Learn how to use the Android Native Developer's Kit

Skill Level: Intermediate

Frank Ableson
Entrepreneur
Navitend

12 Apr 2011

The Android Software Developer Kit (SDK) used by the majority of Android
application developers requires the use of the Java™ programming language.
However, there is a large body of C language code available online. The Android
Native Developer Kit (NDK) permits an Android developer to reuse existing C source
code within an Android application. In this tutorial, you will create an image
processing application in the Java programming language that uses C code to
perform basic image processing operations.

Section 1. Before you start

One of the motivations for exploring the NDK in the first place is the opportunity to
leverage open source projects, many of which are written in C. After completing this
tutorial, you will have learned how to create a Java Native Interface (JNI) library,
written in C and compiled with the Native Development Kit (NDK), and incorporate
the library into an Android application written in the Java language. The application
demonstrates how to perform basic image processing operations against raw image
data. You will also learn how to extend the Eclipse build environment to integrate an
NDK project into an Android SDK project file. From this foundation, you will be better
equipped to port existing open source code to the Android platform.

About this tutorial

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 1 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

This tutorial introduces the Android NDK within the Eclipse environment. The NDK is
used to add functionality to an Android application using the C programming
language. The tutorial begins with a high-level look at the NDK and its common
usage scenarios. From there, the topic of image processing is introduced, followed
by an introduction and demonstration of this tutorial's application: IBM Photo Phun.
This application is a mix of SDK-based Java code and NDK-compiled C code. The
tutorial moves on to introduce the Java Native Interface (JNI), which is the
technology of interest when working with the NDK. A look ahead to the completed
project's source files provides a roadmap for the application constructed here. Then,
in a step-by-step manner, you will construct this application. The Java class and C
source files are explained. To conclude, the Eclipse build environment is customized
to integrate the NDK tool chain directly into the easy-to-use Eclipse build process.

Prerequisites

To follow this tutorial, you should be comfortable constructing Android applications
with the Android SDK and have a basic familiarity with the C programming language.
In addition, you will need the following:

• Eclipse and Android Developer Tools (ADT) — Primary code editor, Java
Compiler, and Android Development Tools Plug-in

• Android Software Developer Kit (SDK)

• Android Native Developer Kit (NDK)

• PNG Image — Image used for testing image processing operations

I created the code samples for this tutorial on a MacBook Pro with Eclipse V3.4.2
and Android SDK V8, which supports the Android release labeled 2.2 (Froyo). The
NDK release used in this tutorial is r4b. The code requires version r4b or later
because the image handling capabilities of the Android NDK are not available in
prior releases of the NDK.

See Resources for links to these tools.

Section 2. The Android NDK

Let's begin with a look at the Android NDK and how it can be used for enhancing the
Android platform. While the Android SDK provides a very rich programming
environment, the Android NDK broadens the horizons and can speed up the delivery
of desired functionality by bringing in existing source code, some of which may be

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 2 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

proprietary and some of which may be open source code.

The NDK

The NDK is a software release available as a free download from the Android
website. The NDK includes all the components necessary to incorporate functionality
written in C into an Android application. The initial release of the NDK offered only
the most primitive of functionality with significant constraints. With each successive
release, the NDK has expanded its capabilities. As of r5 of the NDK application,
authors can write a significant portion of an application directly in C, including user
interface and event-handling capability. The features enabling the image handling
functionality demonstrated here were introduced with the r4b version of the NDK.

Two common uses of the NDK are to increase application performance and to
leverage existing C code by porting it to Android. Let's look first at performance
improvement. Writing code in C does not guarantee a significant increase in
performance. In fact, poorly written native code can actually slow down an
application when compared to a well-written Java application. Application
performance improvements are available when carefully crafted functions written in
C are leveraged to perform memory-based or computationally intensive operations
like those demonstrated in this tutorial. In particular, algorithms that leverage pointer
arithmetic are particularly ripe for use with the NDK. The second common use case
for the NDK is to port an existing body of C code written for another platform, such
as Linux®. This tutorial demonstrates the NDK in a manner that highlights the
performance and the re-use cases.

The NDK contains a compiler and build scripts, allowing you to focus on the C
source files and leave the build magic to the NDK installation. The NDK build
process is easily incorporated into the Eclipse development environment, which is
demonstrated in the section on Customizing Eclipse.

Before jumping into the application itself, let's take a brief detour to discuss some
fundamentals of digital image processing.

Fundamentals of digital imaging processing

An enjoyable aspect of modern computer technology is the advent and ubiquity of
digital photography. There is more to digital photography than simply catching your
kid doing something cute. Digital images are found everywhere from candid
cellphone shots to high-end wedding albums, deep-space images, and numerous
other applications. Digital images are easy to capture, exchange, and even alter.
Modifying a digital image is of interest to us here and represents the core
functionality of the tutorial's sample application.

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 3 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Digital image manipulation occurs in myriad ways, including but not limited to the
following operations:

• Cropping — Extracting a portion of an image

• Scaling — Changing the size of an image

• Rotating — Changing the orientation of an image

• Conversion — Converting from one format to another

• Sampling — Changing the density of an image

• Mixing/Morphing — Changing the appearance of an image

• Filtering — Extracting elements of an image, such as colors or
frequencies

• Edge detection — Used for machine vision applications to identify
objects within an image

• Compressing — Reducing the storage size of an image

• Enhancing an image through pixel operations:

• Histogram equalization

• Contrast

• Brightness

Some of these operations are performed on a pixel-by-pixel basis, while others
involve matrix math to work on small sections of the image at a time. Regardless of
the operations, all image processing algorithms involve working with raw image data.
This tutorial demonstrates the use of pixel and matrix operations in the C
programming language, running on an Android device.

Section 3. The application architecture

This section explores the architecture of the tutorial's sample application, beginning
with a high-level glance at the completed project, then progressing through each of
the major steps in its construction. You can follow along step by step to reconstruct
the application yourself or you can download the complete project from the
Resources section.

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 4 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The completed project

This tutorial demonstrates the construction of a simple image processing application,
IBM Photo Phun. Figure 1 shows a screenshot from the Eclipse IDE with the project
expanded to see the source and output files.

Figure 1. Eclipse project view

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 5 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 6 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The application's UI is constructed with traditional Android development techniques,
using a single layout file (main.xml) and a single Activity, implemented in
IBMPhotoPhun.java. A single C source file, located in a folder named jni, beneath
the project's main folder, contains the image processing routines. The NDK tool
chain compiles the C source file into a shared library file named libibmphotophun.so.
The compiled library file(s) are stored in the libs folder. A library file is created for
each target hardware platform or processor architecture. Table 1 enumerates the
application's source files.

Table 1. The required application source files
File Comment

IBMPhotoPhun.java Extends the Android Activity class for UI and
application logic

Ibmphotophun.c Implements image processing routines

main.xml Home page of the application UI

AndroidManifest.xml Deployment descriptor for the Android application

sampleimage.png Image used for demonstration purposes (feel free
to substitute an image of your own)

Android.mk Makefile snippet used by the NDK to construct
the JNI library

If you don't have a working Android development environment, now is a great time to
install the Android tools. For more information on how to set up an Android
development environment, see Resources for links to the required tools, plus some
introductory articles and tutorials on developing applications for Android. Having a
familiarity with Android is helpful in understanding this tutorial.

Now that you have an overview of the architecture and the application, you can see
how it looks when running on an Android device.

Demonstrating the application

Sometimes it's helpful to begin with the end in mind, so before you dive into the
step-by-step process of creating this application, have a quick look at it in action.
The following screenshots were captured from a Nexus One running Android 2.2
(Froyo). The images were captured using the Dalvik Debug Monitor Service (DDMS)
tool, which installs as part of the Android Developer Tools Eclipse plug-in.

Figure 2 shows the home screen of the application with the sample image loaded.
One quick look at the image and you will understand how I wound up as a
programmer and not on the set of some television program, thanks to my "fit for
radio" face. Please feel free to substitute your own image when building the
application yourself.

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 7 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Figure 2. Home screen of the IBM Photo Phun application

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 8 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 9 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The buttons across the top of the screen allow you to change the image. The first
button, Reset, restores the image to this original color image. Selecting the Convert
Image button converts the image to grayscale, as shown in Figure 3.

Figure 3. Grayscale image

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 10 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 11 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The Find Edges button starts with the original color image, converts it to grayscale,
then performs a Sobel Edge Detection algorithm. Figure 4 shows the results of the
edge detection algorithm.

Figure 4. Detecting the edges

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 12 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 13 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Edge-detection algorithms are often used in machine vision applications as a
preliminary step in a multi-step image processing operation. From this point, the final
two buttons allow you to make the image darker or lighter by changing the
brightness of each pixel. Figure 5 shows a brighter version of the grayscale image.

Figure 5. Increased brightness

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 14 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 15 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Figure 6 shows the edges image a bit darker.

Figure 6. Decreased brightness

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 16 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 17 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Now it is your turn.

Section 4. Creating the application

In this section, we will create the application by leveraging the tools provided in the
Eclipse ADT plug-in. Even if you aren't familiar with creating applications for Android,
you should be able to follow along quite readily and learn from this section. The
Resources section contains helpful articles and tutorials on the basics of creating
Android applications.

ADT new project wizard

Creating the application within the Eclipse IDE is very straightforward, thanks to the
ADT new project wizard, shown in Figure 7.

Figure 7. Creating a new Android project

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 18 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 19 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

When filling out the new project wizard, provide the following information:

1. Valid project name.

2. Build target. Note that for this project, you must use Android V2.2 or
Android V2.3 as the target SDK platform level.

3. Valid application name.

4. Package name.

5. Activity name.

Once you have populated the wizard screen, select Finish. Clicking the Next button
prompts for creating a "Test" project to accompany this project, which is a useful
step, but for another day.

Once the project is populated into Eclipse, you are ready to implement the source
files necessary for this application. You will begin with the UI elements of the
application.

Implementing the user interface

The UI for this application is rather straightforward. It contains a single Activity
with a handful of Button widgets and an ImageView widget to display the chosen
image. Like many Android applications, the UI is defined in the main.xml file, shown
in Listing 1.

Listing 1. UI layout file, main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffffffff"
>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:gravity="center"

>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/btnReset"
android:text="Reset"
android:visibility="visible"

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 20 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

android:onClick="onResetImage"
/>
<Button

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/btnConvert"
android:text="Convert Image"
android:visibility="visible"
android:onClick="onConvertToGray"

/>
<Button

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/btnFindEdges"
android:text="Find Edges"
android:visibility="visible"
android:onClick="onFindEdges"

/>
<Button

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/btnDimmer"
android:text="- "
android:visibility="visible"
android:onClick="onDimmer"

/>
<Button

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/btnBrighter"
android:text=" +"
android:visibility="visible"
android:onClick="onBrighter"

/>
</LinearLayout>
<ImageView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:scaleType="centerCrop"
android:layout_gravity="center_vertical|center_horizontal"
android:id="@+id/ivDisplay"

/>
</LinearLayout>

Note the use of two LinearLayout elements. The outer element controls the
vertical flow of the UI and the inner LinearLayout is set up for horizontal
management of its children. The horizontal layout element holds all of the Button
widgets across the top of the screen. The ImageView is set up to center the
contained image and has an id attribute, permitting you to manipulate its contents
during run time.

Each of the Button widgets has an onClick attribute. The value of this attribute
must correspond to a public void method within the containing Activity class,
which takes a single View argument. This approach is a quick and easy means of
setting up click handlers without the trouble of defining anonymous handlers or
getting access to the element during runtime. See Resources for more information
on this approach to handling Button presses.

Once the UI has been defined in the layout file, the Activity code must be written
to work with the UI. This is implemented in the file IBMPhotoPhun.java, where the

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 21 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Activity class is extended. You can see the code in Listing 2.

Listing 2. IBM Photo Phun imports and class declaration

/*
* IBMPhotoPhun.java
*
* Author: Frank Ableson
* Contact Info: fableson@navitend.com
*/

package com.msi.ibm.ndk;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.graphics.BitmapFactory;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;
import android.view.View;
import android.widget.ImageView;

public class IBMPhotoPhun extends Activity {
private String tag = "IBMPhotoPhun";
private Bitmap bitmapOrig = null;
private Bitmap bitmapGray = null;
private Bitmap bitmapWip = null;
private ImageView ivDisplay = null;

// NDK STUFF
static {

System.loadLibrary("ibmphotophun");
}
public native void convertToGray(Bitmap bitmapIn,Bitmap bitmapOut);
public native void changeBrightness(int direction,Bitmap bitmap);
public native void findEdges(Bitmap bitmapIn,Bitmap bitmapOut);
// END NDK STUFF

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Log.i(tag,"before image stuff");
ivDisplay = (ImageView) findViewById(R.id.ivDisplay);

// load bitmap from resources
BitmapFactory.Options options = new BitmapFactory.Options();
// Make sure it is 24 bit color as our image processing algorithm

// expects this format
options.inPreferredConfig = Config.ARGB_8888;
bitmapOrig = BitmapFactory.decodeResource(this.getResources(),

R.drawable.sampleimage,options);
if (bitmapOrig != null)

ivDisplay.setImageBitmap(bitmapOrig);

}

public void onResetImage(View v) {
Log.i(tag,"onResetImage");

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 22 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ivDisplay.setImageBitmap(bitmapOrig);

}

public void onFindEdges(View v) {
Log.i(tag,"onFindEdges");

// make sure our target bitmaps are happy
bitmapGray = Bitmap.createBitmap(bitmapOrig.getWidth(),bitmapOrig.getHeight(),

Config.ALPHA_8);
bitmapWip = Bitmap.createBitmap(bitmapOrig.getWidth(),bitmapOrig.getHeight(),

Config.ALPHA_8);
// before finding edges, we need to convert this image to gray
convertToGray(bitmapOrig,bitmapGray);
// find edges in the image
findEdges(bitmapGray,bitmapWip);
ivDisplay.setImageBitmap(bitmapWip);

}
public void onConvertToGray(View v) {

Log.i(tag,"onConvertToGray");

bitmapWip = Bitmap.createBitmap(bitmapOrig.getWidth(),bitmapOrig.getHeight(),
Config.ALPHA_8);

convertToGray(bitmapOrig,bitmapWip);
ivDisplay.setImageBitmap(bitmapWip);

}

public void onDimmer(View v) {
Log.i(tag,"onDimmer");

changeBrightness(2,bitmapWip);
ivDisplay.setImageBitmap(bitmapWip);

}
public void onBrighter(View v) {

Log.i(tag,"onBrighter");

changeBrightness(1,bitmapWip);
ivDisplay.setImageBitmap(bitmapWip);

}
}

Let's break this down into a few notable comments:

1. There are a handful of member variables:

• tag — This is used in all logging statements to help filter the LogCat
during debugging.

• bitmapOrig — This Bitmap holds the original color image.

• bitmapGray — This Bitmap holds a grayscale copy of the image
and is only used temporarily during the findEdges routine.

• bitmapWip — This Bitmap holds the grayscale image that is
modified when brightness values are modified.

• ivDisplay — This ImageView is a reference to the ImageView
defined in the main.xml layout file.

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 23 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

2. The "NDK Stuff" section includes four lines:

• The library containing our native code is loaded with a call to
System.loadLibrary. Note that this code is contained in a block
marked as "static." This causes the library to be loaded when the
application is started.

• Prototype declaration for convertToGray — This function takes two
parameters. The first is a color Bitmap and the second is a Bitmap
that is populated with a grayscale version of the first.

• Prototype declaration for changeBrightness — This function takes
two parameters. The first is an integer representing up or down. The
second is a Bitmap that is modified on a pixel by pixel basis.

• Prototype declaration for findEdges. This takes two parameters.
The first is a grayscale Bitmap and the second is a Bitmap that
receives the "edges only" version of the image.

3. The onCreate method inflates the layout identified by R.layout.main,
obtains a reference to the ImageView widget (ivDisplay), then loads
the color image from the resources.

• The BitmapFactory method takes an options parameter that
permits you to load the image in the ARGB format. "A" stands for
alpha channel and "RGB" stands for red, green, blue, respectively.
Many open source image processing libraries expect a 24-bit color
image, eight bits each for red, green, and blue, with each pixel
consisting of the RGB triplet. Each value ranges from 0 to 255.
Images on the Android platform are stored as a 32-bit integer as
alpha, red, green, blue.

• Once the image is loaded, it is displayed in the ImageView.

4. The balance of the methods in this class correspond to "click handlers" for
the Button widgets:

• onResetImage loads the original color image into the ImageView.

• onConvertToGray creates the target Bitmap as an 8-bit image and
calls the convertToGray native function. The resulting image
(bitmapWip) is displayed in the ImageView.

• onFindEdges creates two intermediate Bitmap objects, converts
the color image to a grayscale image and calls the findEdges native
function. The resulting image (bitmapWip) is displayed in the
ImageView.

• onDimmer and onBrighter each invoke the changeBrightness

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 24 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

method to modify the image. The resulting image (bitmapWip) is
displayed in the ImageView.

That about wraps up the UI code. It is now time for you to implement the image
process routines, but first, we need to create the library itself.

Section 5. Creating the NDK files

Now that the Android application's UI and application logic are in place, you need to
implement the image processing functions. In order to do this, you need to create a
Java-native library with the NDK. In this case, you will use some public domain C
code to implement the image processing functions and package them into a library
usable by the Android application.

Building the native library

The NDK creates shared libraries and relies on a makefile system. To build the
native library for this project, you need to perform the following steps:

1. Create a new folder named jni beneath your project file.

2. Within the jni folder, create a file named Android.mk, which contains the
makefile instructions to properly build and name your library.

3. Within the jni folder, create the source file, which is referenced in the
Android.mk file. The name of the C source file for this tutorial is
ibmphotophun.c.

Listing 3 contains the Android.mk file contents.

Listing 3. Android.mk file

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := ibmphotophun
LOCAL_SRC_FILES := ibmphotophun.c
LOCAL_LDLIBS := -llog -ljnigraphics
include $(BUILD_SHARED_LIBRARY)

Among other things, this makefile (snippet) instructs the NDK to:

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 25 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

1. Compile the ibmphotophun.c source file into a shared library.

2. Name the shared library. By default, the shared library naming convention
is lib<modulename>.so. So, the resulting file here is named
libibmphotophun.so.

3. Specify the required "input" libraries. The shared library relies upon two
built-in library files for logging (liblog.so) and jni graphics
(libjnigraphics.so). The logging library permits you to add entries to the
LogCat, which is helpful during the development phase of your project.
The graphics library provides routines for working with Android bitmaps
and their image data.

The ibmphotophun.c source file contains a few C include statements and the
definition of the argb type, which corresponds to the Color data type in the Android
SDK. Listing 4 shows ibmphotophun.c without the image routines, which are
presented next.

Listing 4. Ibmphotophun.c macros and includes

/*
* ibmphotophun.c
*
* Author: Frank Ableson
* Contact Info: fableson@msiservices.com
*/

#include <jni.h>
#include <android/log.h>
#include <android/bitmap.h>

#define LOG_TAG "libibmphotophun"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)

typedef struct
{

uint8_t alpha;
uint8_t red;
uint8_t green;
uint8_t blue;

} argb;

The LOGI and LOGE macros make calls to the Logging facility and are equivalent in
functionality to Log.i() and Log.e() respectively in the Android SDK. The argb
data type defined with the typedef struct keywords allows the C code to access the
four data elements of a single pixel stored in a 32-bit integer. The three include
statements provide the necessary declarations to the C compiler for jni glue, logging,
and bitmap handling, respectively.

It is now time for you to implement some image processing routines, but before we
examine the code itself, you need to understand the naming convention of JNI

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 26 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

functions.

When Java code calls a native function, it maps the function name to an expanded,
or decorated, function, which is exported by the JNI shared library. Here is the
convention: Java_fully_qualified_classname_functionname.

For example, the convertToGray function is implemented in the C code as
Java_com_msi_ibm_ndk_IBMPhotoPhun_convertToGray.

The first two arguments to the JNI functions include a pointer to the JNI environment
and to the calling-class object instance. For more information about JNI, please see
the Resources section.

Building the library is quite simple. Open a terminal (or DOS) window and change
directory to the jni folder where you have stored these files. Make sure that the NDK
is in your path and execute the ndk-build script. This script contains all the glue
necessary to build the library. The resulting library is placed in the libs folder on the
same level as the jni folder (<project folder>/libs/, for example).

When the Android application is packaged by the ADT plug-in for Eclipse, the library
files are included and "wired up" automatically for you. One library file is generated
for each supported hardware platform. The correct library is loaded at runtime.

Let's look at how the image processing algorithms are implemented.

Implementing the image processing algorithms

The image processing routines used by this application were adapted from a variety
of public domain and academic routines, along with my own experience as an image
processing hobbyist. Two of the functions use pixel operations and the third utilizes
a minimal matrix approach. Let's look first at the convertToGray function in Listing
5.

Listing 5. convertToGray function

/*
convertToGray
Pixel operation
*/
JNIEXPORT void JNICALL Java_com_msi_ibm_ndk_IBMPhotoPhun_convertToGray(JNIEnv
* env, jobject obj, jobject bitmapcolor,jobject bitmapgray)
{

AndroidBitmapInfo infocolor;
void* pixelscolor;
AndroidBitmapInfo infogray;
void* pixelsgray;
int ret;
int y;
int x;

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 27 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

LOGI("convertToGray");
if ((ret = AndroidBitmap_getInfo(env, bitmapcolor, &infocolor)) < 0) {

LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
return;

}

if ((ret = AndroidBitmap_getInfo(env, bitmapgray, &infogray)) < 0) {
LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
return;

}

LOGI("color image :: width is %d; height is %d; stride is %d; format is %d;flags is
%d",infocolor.width,infocolor.height,infocolor.stride,infocolor.format,infocolor.flags);

if (infocolor.format != ANDROID_BITMAP_FORMAT_RGBA_8888) {
LOGE("Bitmap format is not RGBA_8888 !");
return;

}

LOGI("gray image :: width is %d; height is %d; stride is %d; format is %d;flags is
%d",infogray.width,infogray.height,infogray.stride,infogray.format,infogray.flags);

if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {
LOGE("Bitmap format is not A_8 !");
return;

}

if ((ret = AndroidBitmap_lockPixels(env, bitmapcolor, &pixelscolor)) < 0) {
LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);

}

if ((ret = AndroidBitmap_lockPixels(env, bitmapgray, &pixelsgray)) < 0) {
LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);

}

// modify pixels with image processing algorithm

for (y=0;y<infocolor.height;y++) {
argb * line = (argb *) pixelscolor;
uint8_t * grayline = (uint8_t *) pixelsgray;
for (x=0;x<infocolor.width;x++) {

grayline[x] = 0.3 * line[x].red + 0.59 * line[x].green + 0.11*line[x].blue;
}

pixelscolor = (char *)pixelscolor + infocolor.stride;
pixelsgray = (char *) pixelsgray + infogray.stride;

}

LOGI("unlocking pixels");
AndroidBitmap_unlockPixels(env, bitmapcolor);
AndroidBitmap_unlockPixels(env, bitmapgray);

}

This function takes two arguments from the calling Java code: a color Bitmap in the
ARGB format and an 8-bit grayscale Bitmap that receives a grayscale version of
the color image. Here is a walk-through of the code:

1. The AndroidBitmapInfo structure, defined in bitmap.h, is helpful for
learning about a Bitmap object.

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 28 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

2. The AndroidBitmap_getInfo function, found in the jnigraphics library,
obtains information about a specific Bitmap object.

3. The next step is to ensure that the bitmaps passed into the
convertToGray function are of the expected format.

4. The AndroidBitmap_lockPixels function locks down the image data
so you can perform operations directly on the data.

5. The AndroidBitmap_unlockPixels function unlocks previously
locked pixel data. These functions should be called as a "lock/unlock
pair".

6. Sandwiched between the lock and unlock functions you see the pixel
operations.

Pointer fun

Image processing applications in C typically involve the use of pointers. Pointers are
variables that "point" to a memory address. The data type of a variable specifies the
type and size of memory you are working with. For example a char represents a
signed 8-bit value, so a char pointer (char *) allows you to reference an 8-bit
value and perform operations through that pointer. The image data is represented as
uint8_t, which means an unsigned 8-bit value, where each byte holds a value
ranging from 0 to 255. A collection of three 8-bit unsigned values represents a pixel
of image data for a 24-bit image.

Working through an image involves working on the individual rows of data and
moving across the columns. The Bitmap structure contains a member known as the
stride. The stride represents the width, in bytes, of a row of image data. For
example, a 24-bit color plus alpha channel image has 32 bits, or 4 bytes, per pixel.
So an image with a width of 320 pixels has a stride of 320*4 or 1,280 bytes. An 8-bit
grayscale image has 8 bits, or 1 byte, per pixel. A grayscale bitmap with a width of
320 pixels has a stride of 320*1 or simply 320 bytes. With this information in mind,
let's look at the image processing algorithm for converting a color image to a
grayscale image:

1. When the image data is "locked," the base address of the image data is
referenced by a pointer named pixelscolor for the input color image
and pixelsgray for the output grayscale image.

2. Two for-next loops allow you to iterate over the entire image.

1. First, you iterate over the height of the image, one pass per "row."

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 29 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Use the infocolor.height value to get the count of the rows.

2. On each pass through the rows a pointer is set up to the memory
location corresponding to the first "column" of image data for the
row.

3. As you iterate over the columns for a particular row, you convert
each pixel of color data to a single value representing the
grayscale value.

4. When the complete row is converted you need to advance the
pointers to the next row. This is done by jumping forward in
memory by the stride value.

For all pixel-oriented image processing operations, you follow the above format. For
example, consider the changeBrightness function shown in Listing 6.

Listing 6. changeBrightness function

/*
changeBrightness
Pixel Operation
*/
JNIEXPORT void JNICALL Java_com_msi_ibm_ndk_IBMPhotoPhun_changeBrightness(JNIEnv
* env, jobject obj, int direction,jobject bitmap)
{

AndroidBitmapInfo infogray;
void* pixelsgray;
int ret;
int y;
int x;
uint8_t save;

if ((ret = AndroidBitmap_getInfo(env, bitmap, &infogray)) < 0) {
LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
return;

}

LOGI("gray image :: width is %d; height is %d; stride is %d; format is %d;flags is
%d",infogray.width,infogray.height,infogray.stride,infogray.format,infogray.flags);

if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {
LOGE("Bitmap format is not A_8 !");
return;

}

if ((ret = AndroidBitmap_lockPixels(env, bitmap, &pixelsgray)) < 0) {
LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);

}

// modify pixels with image processing algorithm

LOGI("time to modify pixels....");
for (y=0;y<infogray.height;y++) {

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 30 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

uint8_t * grayline = (uint8_t *) pixelsgray;
int v;
for (x=0;x<infogray.width;x++) {

v = (int) grayline[x];

if (direction == 1)
v -=5;

else
v += 5;

if (v >= 255) {
grayline[x] = 255;

} else if (v <= 0) {
grayline[x] = 0;

} else {
grayline[x] = (uint8_t) v;

}
}

pixelsgray = (char *) pixelsgray + infogray.stride;
}

AndroidBitmap_unlockPixels(env, bitmap);

}

This function operates in a manner very similar to the convertToGray function with
the following distinctions:

1. This function requires only a single grayscale bitmap. The image passed
in is modified in place.

2. The function adds or subtracts a value of 5 from each pixel on each pass.
This constant may be changed. I used 5 because it made the image
change noticeably with each pass without having to press the plus or
minus buttons excessively.

3. The pixel values are constrained between 0 and 255. Be careful when
performing these operations with unsigned variables directly as it is easy
to "wrap around." My initial effort on the changeBrightness function
resulted in adding 5 to a value such as 252 and winding up with 2. The
effect was fun to watch, but not what I was after. That is why I am using
the integer named v and casting the pixel data to the signed integer and
then comparing that value to 0 and 255.

There remains one more image processing algorithm to examine: the findEdges
function, which works a little bit differently from the prior two pixel-oriented functions.
Listing 7 shows the findEdges function.

Listing 7. The findEdges function detects outlines within an image

/*
findEdges

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 31 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Matrix operation
*/
JNIEXPORT void JNICALL Java_com_msi_ibm_ndk_IBMPhotoPhun_findEdges(JNIEnv
* env, jobject obj, jobject bitmapgray,jobject bitmapedges)
{

AndroidBitmapInfo infogray;
void* pixelsgray;
AndroidBitmapInfo infoedges;
void* pixelsedge;
int ret;
int y;
int x;
int sumX,sumY,sum;
int i,j;
int Gx[3][3];
int Gy[3][3];
uint8_t *graydata;
uint8_t *edgedata;

LOGI("findEdges running");

Gx[0][0] = -1;Gx[0][1] = 0;Gx[0][2] = 1;
Gx[1][0] = -2;Gx[1][1] = 0;Gx[1][2] = 2;
Gx[2][0] = -1;Gx[2][1] = 0;Gx[2][2] = 1;

Gy[0][0] = 1;Gy[0][1] = 2;Gy[0][2] = 1;
Gy[1][0] = 0;Gy[1][1] = 0;Gy[1][2] = 0;
Gy[2][0] = -1;Gy[2][1] = -2;Gy[2][2] = -1;

if ((ret = AndroidBitmap_getInfo(env, bitmapgray, &infogray)) < 0) {
LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
return;

}

if ((ret = AndroidBitmap_getInfo(env, bitmapedges, &infoedges)) < 0) {
LOGE("AndroidBitmap_getInfo() failed ! error=%d", ret);
return;

}

LOGI("gray image :: width is %d; height is %d; stride is %d; format is %d;flags is
%d",infogray.width,infogray.height,infogray.stride,infogray.format,infogray.flags);

if (infogray.format != ANDROID_BITMAP_FORMAT_A_8) {
LOGE("Bitmap format is not A_8 !");
return;

}

LOGI("color image :: width is %d; height is %d; stride is %d; format is %d;flags is
%d",infoedges.width,infoedges.height,infoedges.stride,infoedges.format,infoedges.flags);

if (infoedges.format != ANDROID_BITMAP_FORMAT_A_8) {
LOGE("Bitmap format is not A_8 !");
return;

}

if ((ret = AndroidBitmap_lockPixels(env, bitmapgray, &pixelsgray)) < 0) {
LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);

}

if ((ret = AndroidBitmap_lockPixels(env, bitmapedges, &pixelsedge)) < 0) {
LOGE("AndroidBitmap_lockPixels() failed ! error=%d", ret);

}

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 32 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

// modify pixels with image processing algorithm

LOGI("time to modify pixels....");

graydata = (uint8_t *) pixelsgray;
edgedata = (uint8_t *) pixelsedge;

for (y=0;y<=infogray.height - 1;y++) {
for (x=0;x<infogray.width -1;x++) {

sumX = 0;
sumY = 0;
// check boundaries
if (y==0 || y == infogray.height-1) {

sum = 0;
} else if (x == 0 || x == infogray.width -1) {

sum = 0;
} else {

// calc X gradient
for (i=-1;i<=1;i++) {

for (j=-1;j<=1;j++) {
sumX += (int) ((*(graydata + x + i + (y + j)

* infogray.stride)) * Gx[i+1][j+1]);
}

}

// calc Y gradient
for (i=-1;i<=1;i++) {

for (j=-1;j<=1;j++) {
sumY += (int) ((*(graydata + x + i + (y + j)

* infogray.stride)) * Gy[i+1][j+1]);
}

}

sum = abs(sumX) + abs(sumY);

}

if (sum>255) sum = 255;
if (sum<0) sum = 0;

*(edgedata + x + y*infogray.width) = 255 - (uint8_t) sum;

}
}

AndroidBitmap_unlockPixels(env, bitmapgray);
AndroidBitmap_unlockPixels(env, bitmapedges);

}

The findEdges routine shares much in common with the prior two functions:

1. Like the convertToGray function, this function takes two bitmap
parameters, but in this case, both are grayscale.

2. The bitmaps are interrogated to ensure that they are of the expected
format.

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 33 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

3. The bitmap pixels are locked and unlocked appropriately.

4. The algorithm iterates over the source image's rows and columns.

Unlike the prior two functions, this function compares each pixel to the pixels around
it, rather than simply performing a mathematical operation on the pixel value itself.
The algorithm implemented in this function is a variant of the Sobel Edge Detection
algorithm. In this implementation, I am comparing each pixel to its neighbors with a
border of one pixel in each direction. Variants of this and other algorithms may use
larger "borders" to obtain different results. Comparing each pixel to its neighbors
accentuates the contrast between pixels and in doing so highlights the "edges."

I am not going to go into the math involved in this algorithm for two reasons. First, it
is beyond the scope of this tutorial to care about the math itself. And second, the
exact purpose of this tutorial — to (re)use existing C source code — is demonstrated
by using an existing image processing algorithm. You are able to obtain the desired
results without reinventing the wheel or having to port this code to Java technology.
C is an ideal environment for working with image data, thanks to pointer arithmetic.

For more information about image processing algorithms, please see Resources.

Section 6. Customizing Eclipse

One of the enjoyable aspects of working with the Eclipse IDE is that you rarely have
to compile. Anytime you save a file within the Eclipse IDE, your project is built
automatically. That is great for the Android SDK (that is, Java) files and the Android
XML files, but what about the NDK-built library? Let's find out.

Extending the Eclipse environment

As mentioned, building the native library is as simple as running the ndk-build
command. However, when working with a project for anything other than a trivial
exercise, it is a hassle to jump out to a terminal or command window and execute
the ndk-build command, return to the Eclipse environment, and force a refresh by
"touching" one of the project files, which forces a recompile and repackaging of the
complete application. The solution is to extend the Eclipse environment by
customizing the build settings for your Android project.

To modify the build settings, first view the properties of the Android project and
select Builders in the list. Add a new Builder and move it to the top of the list, as

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 34 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

shown in Figure 8.

Figure 8. Modifying the build settings

Each builder has four configuration tabs. Give your builder a name, such as Build
NDK Library, then populate the tabs. The first tab ("Main") specifies the executable
tool location and working directory. Point the location to the ndk-build file and the
working directory to your jni folder, as shown in Figure 9.

Figure 9. Setting up the Builder properties for the NDK

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 35 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

You only want the ndk-build to operate on this project and not others within your
Eclipse workspace, so set this up on the Refresh tab, as shown in Figure 10.

Figure 10. Setting up the Refresh tab

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 36 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The only time you want the library to rebuild is when either the Android.mk file or the
ibmphotophun.c file is modified. To set this up, choose the jni folder under the
Specify Resources button on the Build Options tab. Also, specify when you want
the build tool to run by checking off the appropriate times, as shown in Figure 10.

Figure 11. Setting up the build options

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 37 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

After clicking OK to confirm your settings, make sure that this NDK build tool is set
up as the first entry in the list by selecting the Up button until it is at the top of the list
of Builders, as shown in Figure 7.

To test that your Builder is set up properly, open the ibmphotophun.c source file
within Eclipse by right-clicking on the source file and choose to open it with the Text
Editor. Make a simple change and save the file. You should see the NDK tool-chain
output in the console window, as shown in Figure 11. If your C code has errors they
are shown in red.

Figure 12. NDK output shows in the console of the Eclipse IDE

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 38 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

With the NDK stitched into your build process, you can focus on writing code and not
concern yourself so much with the build environment. Need to make a change to the
application logic? No problem, modify the Java code and save the file. Need to
tweak the image processing algorithm? No worries, just modify the C routine and
save the file. Eclipse and the ADT plug-in takes care of the rest for you.

Section 7. Summary

This tutorial presented an example of using the Android NDK to incorporate
functionality in the C programming language. The functions used here represent a
sampling of open source/public domain image processing algorithms. In a similar
manner, any valid C code compatible for the Android platform may be utilized with
the help of the Android NDK. In addition to the mechanics of using the NDK within
Eclipse, you also learned some fundamental concepts around image processing.

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 39 of 42

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download
method

Source code os-androidndk-IBMPhotoPhun.source.zip995KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 40 of 42

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=646128&filename=os-androidndk-IBMPhotoPhun.source.zip&method=http&locale=
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Read "Writing C Code for Android," by Frank Ableson, at Linux Magazine.

• Learn more by reading the Edge Detection Tutorial, by Bill Green.

• Image Processing in C, by Dwayne Phillips, R&D Publications (ISBN
0-13-104548-2) offers more image processing information.

• See the Wikipedia page on Java Native Interface (JNI).

• Check out NDK at http://developer.android.com.

• Read "Wiring Up Android Buttons" from Linux Magazine to learn how to handle
button presses in Android.

• Learn about developing Android applications using Eclipse in "Develop Android
applications with Eclipse."

• Read "Networking with Android" to explore the networking capabilities of
Android.

• Check out "Working with XML on Android" to learn about the different options
for working with XML on Android and how to use them to build your own
Android applications.

• Android in Action, 2nd Edition, by Frank Ableson, covers all aspects of Android
development book.

• Mobile Design and Development, by Brian Fling, discusses practical guidelines,
standards, techniques, and best practices for building mobile products.

• Get the Android SDK documentation.

• Visit the Open Handset Alliance, Android's sponsor.

• Read "Introduction to Android development" to get started developing Android
applications.

• Read "Under the Hood of Native Web Apps for Android" at Linux Magazine, by
Frank Ableson.

• To listen to interesting interviews and discussions for software developers,
check out developerWorks podcasts.

• Stay current with developerWorks' Technical events and webcasts.

• Follow developerWorks on Twitter.

• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

ibm.com/developerWorks developerWorks®

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 41 of 42

http://www.linux-mag.com/id/7697
http://www.linux-mag.com
http://www.pages.drexel.edu/~weg22/edge.html
http://dwaynephillips.net/#books
http://en.wikipedia.org/wiki/Java_Native_Interface
http://developer.android.com/sdk/ndk/overview.html
http://developer.android.com/index.html
http://www.linux-mag.com/id/7844
http://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-android/
http://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-android/
http://www.ibm.com/developerworks/opensource/library/os-android-networking/
http://www.ibm.com/developerworks/xml/library/x-android/
http://manning.com/ableson2
http://oreilly.com/catalog/9780596155445/
http://developer.android.com/reference/packages.html
http://www.openhandsetalliance.com/
http://www.ibm.com/developerworks/opensource/library/os-android-devel/
http://www.linux-mag.com/id/7633
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://twitter.com/developerworks
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products, as well as our most popular articles and
tutorials.

• Watch and learn about IBM and open source technologies and product
functions with the no-cost developerWorks On demand demos.

Get products and technologies

• Download the Android SDK, access the API reference, and get the latest news
on Android from the official Android developers' site. V1.5 and later will work.
This tutorial used Android SDK V8, which supports the Android release labeled
2.2 (Froyo).

• Download the Android NDK. The NDK release used in this tutorial is r4b.

• Android is open source, which means that you can get the source code for it
from the Android Open Source Project.

• Obtain the latest Eclipse IDE. V3.4.2 was used in this tutorial.

• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

• Download IBM product evaluation versions or explore the online trials in the
IBM SOA Sandbox and get your hands on application development tools and
middleware products from DB2®, Lotus®, Rational®, Tivoli®, and
WebSphere®.

Discuss

• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Get involved in the developerWorks community. Connect with other
developerWorks users while exploring the developer-driven blogs, forums,
groups, and wikis.

About the author

Frank Ableson
W. Frank Ableson is an entrepreneur living in northern New Jersey with
his wife Nikki and their children. His professional interests include
mobile software and embedded design. He is the author of Unlocking
Android (Manning Publications, 2009) and Android in Action (Manning
Publications, 2011) and he is the mobile editor for Linux Magazine.

developerWorks® ibm.com/developerWorks

Reuse existing C code with the Android NDK Trademarks
© Copyright IBM Corporation 2011. All rights reserved. Page 42 of 42

http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/opensource/library/os-top10.html
http://www.ibm.com/developerworks/opensource/library/os-top10.html
http://www.ibm.com/developerworks/offers/lp/demos/
http://developer.android.com
http://developer.android.com/sdk/ndk/index.html
http://source.android.com/
http://www.eclipse.org/downloads
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/downloads/soasandbox/
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/community
http://linux-mag.com/blogs/fableson
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Prerequisites

	The Android NDK
	The NDK
	Fundamentals of digital imaging processing

	The application architecture
	The completed project
	Demonstrating the application

	Creating the application
	ADT new project wizard
	Implementing the user interface

	Creating the NDK files
	Building the native library
	Implementing the image processing algorithms
	Pointer fun

	Customizing Eclipse
	Extending the Eclipse environment

	Summary
	Downloads
	Resources
	About the author

