

Android NDK
Beginner's Guide

Sylvain Ratabouil

Chapter No. 11

"Debugging and Troubleshooting"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.11 "Debugging and Troubleshooting"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Sylvain Ratabouil is a confirmed IT consultant with experience in C++ and Java

technologies. He worked for the space industry and got involved in aeronautic projects at

Valtech Technologies where he now takes part in the Digital Revolution.

Sylvain earned the master's degree in IT from Paul Sabatier University in Toulouse and

did M.Sc. in Computer Science from Liverpool University.

As a technology lover, he is passionate about mobile technologies and cannot live or

sleep without his Android smartphone.

I would like to thank Steven Wilding for offering me to write this book;

Sneha Harkut and Jovita Pinto for awaiting me with so much patience;

Reshma Sundaresan, and Dayan Hyames for putting this book on the

right track; Sarah Cullington for helping me finalizing this book; Dr.

Frank Grützmacher, Marko Gargenta, and Robert Mitchell for all their

helpful comments.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Android NDK

Beginner's Guide
The short history of computing machines has witnessed some major events, which

forever transformed our usage of technology. From the first massive main frames to the

democratization of personal computers, and then the interconnection of networks.

Mobility is the next revolution. Like the primitive soup, all the ingredients are now

gathered: an ubiquitous network, new social, professional and industrial usages, a

powerful technology. A new period of innovation is blooming right now in front of our

eyes. We can fear it or embrace it, but it is here, for good!

The mobile challenge

Today's mobile devices are the product of only a few years of evolution, from the first

transportable phones to the new tiny high-tech monsters we have in our pocket. The

technological time scale is definitely not the same as the human one.

Only a few years ago, surfing on the successful wave of its musical devices, Apple and its

founder Steve Jobs combined the right hardware and the right soft ware at the right time

not only to satisfy our needs, but to create new ones. We are now facing a new ecosystem

looking for a balance between iOS, Windows Mobile, Blackberry, WebOS, and more

importantly Android! The appetite of a new market could not let Google apathetic.

Standing on the shoulder of this giant Internet, Android came into the show as the best

alternative to the well established iPhones and other iPads. And it is quickly becoming

the number one.

In this modern Eldorado, new usages or technically speaking, applications (activities, if

you already are an Android adept) still have to be invented. This is the mobile challenge.

And the dematerialized country of Android is the perfect place to look for. Android is

(mostly) an open source operating system now supported by a large panel of mobile

device manufacturers.

Portability among hardware and adaptability to the constrained resources of mobile

devices: this is the real essence of the mobile challenge from a technical perspective.

With Android, ones has to deal with multiple screen resolutions, various CPU and GPU

speed or capabilities, memory limitations, and so on, which are not topics specific to this

Linux-based system, (that is, Android) but can particularly be incommoding.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

To ease portability, Google engineers packaged a virtual machine with a complete

framework (the Android SDK) to run programs written in one of the most spread

programming language nowadays: Java. Java, augmented with the Android framework, is

really powerful. But first, Java is specific to Android. Apple's products are written for

example in Objective C and can be combined with C and C++. And second, a Java virtual

machine does not always give you enough capability to exploit the full power of mobile

devices, even with just-in-time compilation enabled. Resources are limited on these

devices and have to be carefully exploited to offer the best experience. This is where the

Android Native Development Kit comes into place.

What This Book Covers
Chapter 1, Setting Up your Environment, covers the tools required to develop an

application with the Android NDK. This chapter also covers how to set up a development

environment, connect your Android device, and configure the Android emulator.

Chapter 2, Creating, Compiling, and Deploying Native Projects, we will compile,

package, and deploy NDK samples and create our first Android Java/C hybrid project

with NDK and Eclipse.

Chapter 3, Interfacing Java and C/C++ with JNI, presents how Java integrates and

communicates with C/C++ through Java Native Interface.

Chapter 4, Calling Java Back from Native Code, we will call Java from C to achieve

bidirectional communication and process graphic bitmaps natively.

Chapter 5, Writing a Fully-native Application, looks into the Android NDK application

life-cycle. We will also write a fully native application to get rid of Java.

Chapter 6, Rendering Graphics with OpenGL ES, teaches how to display advanced 2D

and 3D graphics at full speed with OpenGL ES. We will initialize display, load textures,

draw sprites and allocate vertex and index buffers to display meshes.

Chapter 7, Playing Sound with OpenSL ES, adds a musical dimension to native

applications with OpenSL ES, a unique feature provided only by the Android NDK. We

will also record sounds and reproduce them on the speakers.

Chapter 8, Handling Input Devices and Sensors, covers how to interact with an Android

device through its multi -touch screen. We will also see how to handle keyboard events

natively and apprehend the world through sensors and turn a device into a

game controller.

Chapter 9, Porting Existing Libraries to Android, we will compile the indispensable

C/C++ frameworks, STL and Boost. We will also see how to enable exceptions and

RunTime Type Information. And also port our own or third-party libraries to Android,

such as, Irrlicht 3D engine and Box2D physics engine.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 10, Towards Professional Gaming, creates a running 3D game controlled with

touches and sensors using Irrlicht and Box2D.

Chapter 11, Debugging and Troubleshooting, provides an in-depth analysis of the

running application with NDK debug utility. We will also analyze crash dumps and

profile the performance of our application.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

11
Debugging and Troubleshooting

This introducti on to the Android NDK would not be complete without approaching
some more advanced topics: debugging and troubleshooti ng code. Indeed, C/C++
are complex languages that can fail in many ways.

I will not lie to you: NDK debugging features are rather rubbish yet. It is oft en
more practi cal and fast to rely on simple log messages. This is why debugging
is presented in this last chapter. But sti ll, a debugger can save quite some ti me
in complex programs or even worse... crashing programs! But even in that case,
there exist alternati ve soluti ons.

More specifi cally, we are going to discover how to do the following:

 Debug nati ve code with GDB

 Interpret a stack trace dump

 Analyze program performances with GProf

Debugging with GDB
Because Android NDK is based on the GCC toolchain , Android NDK includes GDB, the GNU
Debugger , to allow starti ng, pausing, examining, and altering a program. On Android and
more generally on embedded devices, GDB is confi gured in client/server mode. The program
runs on a device as a server and a remote client, the developer's workstati on connects to it
and sends debugging commands as for a local applicati on.

GDB itself is a command-line uti lity and can be cumbersome to use manually. Hopefully,
GDB is handled by most IDE and especially CDT . Thus, Eclipse can be used directly to add
breakpoints and inspect a program, only if it has been properly confi gured before!

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[384]

Indeed, Eclipse can insert breakpoints easily in Java as well as C/C++ source fi les by clicking
in the gutt er, to the text editor's left . Java breakpoints work out of the box thanks to the ADT
plugin, which manages debugging through the Android Debug Bridge. This is not true for CDT
which is naturally not Android-aware. Thus, inserti ng a breakpoint will just do nothing unless
we manage to confi gure CDT to use the NDK's GDB, which itself needs to be bound to the
nati ve Android applicati on to debug.

Debugger support has improved among NDK releases (for example, debugging purely nati ve
threads was not working before). Although it is getti ng more usable, in NDK R5 (and even
R7), situati on is far from perfect . But, it can sti ll help! Let's see now concretely how to debug
a nati ve applicati on.

Time for action – debugging DroidBlaster
Let's enable debugging mode in our applicati on fi rst:

1. The fi rst important thing to do but really easy to forget is to acti vate the
debugging fl ag in your Android project. This is done in the applicati on manifest
AndroidManifest.xml . Do not forget to use the appropriate SDK version for
nati ve code:

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>
 <uses-sdk android:minSdkVersion="10"/>
 <application ...
 android:debuggable="true">
 ...

2. Enabling debug fl ag in manifest automati cally acti vates debug mode in nati ve code.
However, APP_OPTIM fl ag also controls debug mode. If it has been manually set in
Android.mk, then check that its value is set to debug (and not release) or simply
remove it:

APP_OPTIM := debug

First, let's confi gure the GDB client that will connect to the device:

3. Recompile the project. Plug your device in or launch the emulator. Run and leave your
applicati on. Ensure the applicati on is loaded and its PID available. You can check it by
listi ng processes using the following command. One line should be returned:

$ adb shell ps |grep packtpub

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[385]

4. Open a terminal window and go to your project directory. Run the ndk-gdb command
(located in $ANDROID_NDK folder, which should already be in your $PATH):

$ ndk-gdb

This command should return no message and create three fi les in obj/local/
armeabi:

 gdb.setup : This is a confi gurati on fi le generated for GDB client.

 app_process: This fi le is retrieved directly from your device. It is a system
executable fi le (that is, Zygote , see Chapter 2, Creati ng, Compiling, and
Deploying Nati ve Projects), launched when system starts up and forked to
start a new applicati on. GBD needs this reference fi le to fi nd its marks. It is
in some way the binary entry point of your app.

 libc.so: This is also retrieved from your device. It is the Android standard
C library (commonly referred as bionic) used by GDB to keep track of all the
nati ve threads created during runti me.

Append –verbose fl ag to have a detailed feedback on what
ndk-gdb does. If ndk-gdb complains about an already running
debug session, then re-execute ndk-gdb with the –force fl ag .
Beware, some devices (especially HTC ones) do not work in debug
mode unless they are rooted with a custom ROM (for example,
they return a corrupt installati on error).

5. In your project directory, copy obj/local/armeabi/gdb.setup and name it
gdb2.setup. Open it and remove the following line which requests GDB client to
connect to the GDB server running on the device (to be performed by Eclipse itself):

target remote :5039

6. In the Eclipse main menu, go to Run | Debug Confi gurati ons... and create a new
Debug confi gurati on in the C/C++ Applicati on item called DroidBlaster_JNI. This
confi gurati on will start GDB client on your computer and connect to the GDB Server
running on the device.

7. In the Main tab, set:

 Project to your own project directory (for example, DroidBlaster_
Part8-3).

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[386]

 C/C++ Applicati on to point to obj/local/armeabi/app_process using
the Browse butt on (you can use either an absolute or a relati ve path).

8. Switch launcher type to Standard Create Process Launcher using the link Select
other... at the bott om of the window:

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[387]

9. Go to the debugger fi le and set:

 Debugger type to gdbserver.

 GDB debugger to ${ANDROID_NDK}/toolchains/arm-linux-
androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-
androideabi-gdb.

 GDB command fi le to point to the gdb2.setup fi le located in obj/
local/armeabi/ (you can use either an absolute or a relati ve path).

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[388]

10. Go to the Connecti on tab and set Type to TCP. Default value for Host name or IP
address and Port number can be kept (localhost d 5039).

Now, let's confi gure Eclipse to run GDB server on the device:

11. Make a copy of $ANDROID_NDK/ndk-gdb and open it with a text editor.
Find the following line:

$GDBCLIENT -x `native_path $GDBSETUP`

Comment it because GDB client is going to be run by Eclipse itself:

#$GDBCLIENT -x `native_path $GDBSETUP`

12. In the Eclipse main menu, go to Run | External Tools | External Tools
Confi gurati ons... and create a new confi gurati on DroidBlaster_GDB.
This confi gurati on will launch GDB server on the device.

13. In the Main tab, set:

 Locati on pointi ng to our modifi ed ndk-gdb in $ANDROID_NDK. You can use
Variables... butt on to defi ne Android NDK locati on in a more generic way
(that is, ${env_var:ANDROID_NDK}/ndk-gdb).

 Working directory to your applicati on directory locati on (for example,
${workspace_loc:/DroidBlaster_Part8-3})

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[389]

 Opti onally, set the Arguments textbox:

 –-verbose: To see in details what happens in the Eclipse console.

 –force: To kill automati cally any previous session.

 –start: To let GDB Server start the applicati on instead of getti ng att ached
to the applicati on aft er it has been started. This opti on is interesti ng if you
debug nati ve code only and not Java but it can cause troubles with the
emulator (such as to leave the back butt on).

We are done with confi gurati on.

14. Now, launch your applicati on as usual (as shown in Chapter 2, Creati ng, Compiling,
and Deploying Nati ve Projects).

15. Once applicati on is started, launch the external tool confi gurati on DroidBlaster
GDB which is going to start GDB server on the device. GDB server receives debug
commands sent by the remote GDB client and debugs your applicati on locally.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[390]

16. Open jni/DroidBlaster.cpp and set a breakpoint on the fi rst line of onStep()
(mTimeService->update()) by double-clicking on the gutt er on the text editor's
left (or right-clicking and selecti ng Toggle breakpoint).

17. Finally, launch DroidBlaster JNI C/C++ applicati on confi gurati on to start GDB client.
It relays debug commands from Eclipse CDT to GDB server over a socket connecti on.
From the developer's point of view, this is almost like debugging a local applicati on.

What just happened?
If set up properly, applicati on freezes aft er a few seconds and Eclipse focuses into the break-
pointed line. It is now possible to step into, step out, step over a line of code or resume
applicati on. For assembly-addict, an instructi on stepping mode can also be acti vated.

Now, enjoy the benefi t of this modern producti vity tool, that is, a debugger. However, as you
are going or maybe are already experiencing, beware that debugging on Android is rather
slow (because it needs to communicate with the remote Android device) and somewhat
unstable though it works well most of the ti me.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[391]

If the confi gurati on process is a bit complicated and tricky, the same goes for the launch of
a debug session. Remember the three necessary steps:

1. Start the Android applicati on (whether from Eclipse or your device).

2. Then, launch GDB server on the device (that is, the DroidBlaster_GDB confi gurati on
here) to att ach it to the applicati on locally.

3. Finally, start GDB client on your computer (that is, the DroidBlaster_JNI
confi gurati on here) to allow CDT to communicate with the GDB server.

4. Opti onally, start the GDB server with the –start fl ag to make it launch the
applicati on itself and omit the fi rst step.

Beware gdb2.setup may be removed while cleaning your
project directory. When debugging stops working, this should
be the second thing to check, aft er making sure that ndk-gdb
is up and running.

However, there is an annoying limitati on about this procedure: we are interrupti ng the
program while it is already running. So how to stop on a breakpoint in initi alizati on code
and debug it (for example in jni/DroidBlaster.cpp on onActivate())? There are
two soluti ons:

 Leave your applicati on and launch the GDB client. Android does not manage
memory as it is in Windows, Linux, or Mac OS X: it kills applicati ons only when
memory is needed. Processes are kept in memory even aft er user leaves. As your
applicati on is sti ll running, GDB server remains started and you can quietly start
your client debugger. Then, just start your applicati on from your device (not from
Eclipse, which would kill it).

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[392]

 Take a pause when the applicati on starts... in the Java code! However, from a fully
nati ve applicati on, you will need to create a src folder for Java sources and add a
new Activity class extending NativeActivity. Then you can put a breakpoint
on a stati c initi alizer block.

Stack trace analysis
 No need to lie. I know it happened. Do not be ashamed, it happened to all of us... your
program crashed, without a reason! You think probably the device is getti ng old or Android
is broken. We all made that refl ecti on but ninety-nine percent of the ti me, we are the ones
to blame!

Debuggers are the tremendous tool to look for problems in your code. But they work in real
ti me when programs run. They assume you know where to look for. With problems that
cannot be reproduced easily or that already happened, debuggers become sterile.

Hopefully, there is a soluti on: a few uti liti es embedded in the NDK help to analyse ARM stack
traces. Let's see how they work.

Time for action – analysing a crash dump

1. Let's introduce a fatal bug in the code. Open jni/DroidBlaster.cpp and modify
method onActivate() as follows:

...
 void DroidBlaster::onActivate() {
 ...
 mTimeService = NULL;
 return packt::STATUS_KO;
 }
...

2. Open the LogCat view (from Window | Show View | Other...) in Eclipse and then
run the applicati on. Not prett y for a candid Android developer! A crash dump
appeared in the logs:

...
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'htc_wwe/htc_bravo/bravo:2.3.3/...
pid: 1723, tid: 1743 >>> com.packtpub.droidblaster <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0000000c
 r0 a9df2e71 r1 40815c8d r2 7cb9c28d r3 00000000
...

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[393]

 ip a3400000 sp 45102830 lr 00000016 pc 80410a2c cpsr 00000030
 d0 6f466e6961476e6f d1 0000000400000390
...
 scr 20000012
 #00 pc 00010a2c /data/data/com.packtpub.droidblaster/
lib/libdroidblaster.so
 #01 pc 00009fcc /data/data/com.packtpub.droidblaster/
lib/libdroidblaster.so
...
 #06 pc 00011618 /system/lib/libc.so
code around pc:
80410a0c 00017ad4 00000000 b084b510 9b019001
...
code around lr:
stack:
 451027f0 00000000
 451027f4 45102870
 451027f8 804110f5 /data/data/com.packtpub.droidblaster/lib/
libdroidblaster.so
...

 This dump contains useful informati on about the current program state. First it
describes the error that happened: a SIGSEGV, also known as a segmentati on fault .
If you look at the faulty address, that is, 0000000c, you will see that it is close to
NULL. This is an important hint!

Then we have informati on about ARM register states (rX, dX, ip, sp, lr, pc, and so
on). But what we are interested in comes right aft er this: informati on about where
the program was when it got interrupted. These lines are highlighted in the extract
above and can be identi fi ed by the words pc writt en on the line and an hexadecimal
number aft er it. The latt er expresses the Program Counter locati on, that is, which
instructi on was executed when problem occurred. Note that this memory address is
relati ve to the containing library. With this piece of informati on, we know exactly on
which instructi on problem occurred... in the binary code!

3. We need somehow to translate this binary address into something understandable to
a normal human being. The fi rst soluti on is to disassemble completely the .so library.

Open a terminal window and go to your project directory. Then execute the
objdump command located in the executable directory of the NDK toolchain:

$ $ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-objdump -S

 ./obj/local/armeabi/libdroidblaster.so > ~/disassembler.dump

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[394]

4. This command disassembles the library and outputs each assembler instructi on and
locati on accompanied with the source C/C++ code. Open the output fi le with a text
editor and if you look carefully, you will fi nd the same address than the one in the
crash dump, next to pc:

...
 void TimeService::update()
 {
 10a14: b510 push {r4, lr}
 10a16: b084 sub sp, #16
 10a18: 9001 str r0, [sp, #4]
 double lCurrentTime = now();
 10a1a: 9b01 ldr r3, [sp, #4]
 10a1c: 1c18 adds r0, r3, #0
 10a1e: f000 f81f bl 10a60 <_
ZN5packt11TimeService3nowEv>
 10a22: 1c03 adds r3, r0, #0
 10a24: 1c0c adds r4, r1, #0
 10a26: 9302 str r3, [sp, #8]
 10a28: 9403 str r4, [sp, #12]
 mElapsed = (lCurrentTime - mLastTime);
 10a2a: 9b01 ldr r3, [sp, #4]
 10a2c: 68dc ldr r4, [r3, #12]
 10a2e: 689b ldr r3, [r3, #8]
 10a30: 9802 ldr r0, [sp, #8]
 10a32: 9903 ldr r1, [sp, #12]
...

5. As you can see, problem seems to occur when executi ng mService->update() in
jni/TimeService.cpp instructi on because of the wrong object address inserted
in step 1.

6. Disassembled dump fi le can become quite big. For this version of droidblaster.
so, it should be around 3 MB. But it could become tenth MB, especially when
libraries such as Irrlicht are involved! In additi on, it needs to be regenerated each
ti me library is updated.

Hoperfully, another uti lity named addr2line , located in the same directory as
objdump, is available. Execute the following command with the pc address at the
end, where -f shows functi on names, -C demangles them and -e indicates the
input library:

$ $ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-addr2line -f –C

 -e ./obj/local/armeabi/libdroidblaster.so 00010a2c

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[395]

This gives immediately the corresponding C/C++ instructi on and its locati on in its
source fi le:

7. Since version R6, Android NDK provides ndk-stack in its root directory. This uti lity
does what we have done manually using an Android log dump. Coupled with the
ADB, which is able to display Android logs while in real ti me, crashes can be analyzed
without a move (except your eyes!).

Simply run the following command from a terminal window to decipher crash
dumps automati cally:

$ adb logcat | ndk-stack -sym ./obj/local/armeabi

********** Crash dump: **********

Build fingerprint: 'htc_wwe/htc_bravo/bravo:2.3.3/
GRI40/96875.1:user/release-keys'

pid: 1723, tid: 1743 >>> com.packtpub.droidblaster <<<

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0000000c

Stack frame #00 pc 00010a2c /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine update in /home/
packt/Project/Chapter11/DroidBlaster_Part11/jni/TimeService.cpp:25

Stack frame #01 pc 00009fcc /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine onStep in /home/
packt/Project/Chapter11/DroidBlaster_Part11/jni/DroidBlaster.
cpp:53

Stack frame #02 pc 0000a348 /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine run in /home/packt/
Project/Chapter11/DroidBlaster_Part11/jni/EventLoop.cpp:49

Stack frame #03 pc 0000f994 /data/data/com.packtpub.
droidblaster/lib/libdroidblaster.so: Routine android_main in /
home/packt/Project/Chapter11/DroidBlaster_Part11/jni/Main.cpp:31

...

What just happened?
We have used ARM uti liti es embedded in the Android NDK to locate the origin of an
applicati on crash. These uti liti es consti tute an inesti mable help and should be considered
as your fi rst-aid kit when a bad crash happens.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[396]

However, if they can help you fi nding the "where", it is another kett le of fi sh to fi nd the
"why". As you can see in the piece of code at step 4, understanding why LDR instructi on
(whose goal is to load in a register, some data from memory, constants, or other registers)
fails is not trivial. This is where your programmer intuiti on (and possibly knowledge of
assembly code) comes into play.

More on crash dumps
 For general culture, let's linger briefl y on what is provided in the LogCat crash dump . A crash
dump is not dedicated only to overly talented developers or people seeing red-dressed girl in
binary code, but also to those who have a minimum knowledge of assemblers and the way
ARM processors work. The goal of this trace is to give as much informati on as possible on the
current state of the program at the ti me it crashed:

 The fi rst line gives the build fi ngerprint, which is a kind of an identi fi er indicati ng
the device/Android release currently running. This informati on is interesti ng when
analyzing dumps from various origins.

 The second line indicates the PID , process identi fi er, which uniquely identi fy an
applicati on on Unix system, and the TID , which is the thread identi fi er. It can be
the same as the process identi fi er when crash occurs on the main thread.

 The third line shows the crash origin represented as a signal, here a classic
segmentati on fault (SIGSEGV).

 Then, processor's register values are dumped, where:

 rX: This is an integer register.

 dX: This is a fl oati ng point register.

 fp (or r11): The Frame Pointer holds a fi xed locati on on the stack during
a routi ne call (in conjuncti on with the Stack Pointer).

 ip (or r12): The intra procedure call scratch register may be used with
some subrouti ne calls, for example, when the linker needs a veneer (a small
piece of code) to aim at a diff erent memory area when branching (a branch
instructi on to jump somewhere else in the memory requires an off set
argument relati ve to current locati on, allowing a branching range of a few
MB only, not the full memory).

 sp (or r13): This is the stack pointer , which saves locati on of the top of
the stack.

 lr (or r14): The link register generally saves program counter's value
temporarily to restore it later. A typical example of its use is a functi on
call which jumps somewhere in the code and then go back to its previous
locati on. Of course, several chained subrouti ne calls requires the link
register to be stacked.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[397]

 pc (or r15): This represents the program counter which holds the address
of next instructi on to execute. Program counter is just incremented when
executi ng a sequenti al code to fetch next instructi on but is altered by
branching instructi ons (if/else, a C/C++ functi on calls, and so on).

 cpsr: The Current Program Status Register contains a few fl ags about the
current processor working mode and some additi onal bit fl ags for conditi on
codes (such as N for an operati on which resulted in a negati ve value, Z for a 0
or equality result, and so on), interrupts, and instructi on set (Thumb or ARM).

 Crash dump also contains a few memory words around PC (that is, the block of
instructi ons around) and LR (for previous locati on).

 Finally, a dump of the raw call stack is logged.

Just a conventi on

Remember that the use of registers is mainly a conventi on. For
example, Apple iOS uses r7 as a frame pointer instead of r12...
So always be very careful when reusing existi ng code!

Performance analysis
 If debugging tools are sti ll imperfect, I have to advise you that profi ling tools are rather
immature... when they even work! Actually, there is no real offi cial support from Google
for memory or performance profi ler, except in the emulator. This may change soon or later.
But right now, those who like to tweak code and analyse each instructi on may starve. This
is parti cularly true when developing with a non-developer or non-rooted phone.

Hopefully, a few soluti ons exist and some are coming. Let's cite the following one:

 Valgrind: This is probably the most famous open source profi ler which can monitor
not only performance but also memory and cache usage. This uti lity is currently
being ported to Android. With some tweaking, it is possible to make it work on a
developer or rooted phone in ArmV7 mode. It is one of the best hopes for Android.

 Android-NDK-Profi ler : This is a port of Gprof on Android. It is a simple and basic
profi ler which works by instrumenti ng and sampling code at runti me. It is the
simplest soluti on to profi le performance and does not require any specifi c hardware.

 OProfi le is a system-wide profi ler which inserts its code in the system kernel (which
thus needs to be updated) to collect profi ling data with a low overhead. It is more
complicated to install and requires a developer or rooted phone to work but works
quite well and does instrument code. It is a much bett er soluti on to profi le code for
free if you have proper hardware at your disposal.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[398]

 The commercial development suite ARM DS-5 and its StreamLine performance
analyzer may become an interesti ng opti on.

 Open GL ES Profi lers from manufacturers: Adreno Profi ler for Qualcomm , PerfHUD
ES for NVidia and PVRTune for PowerVR . These profi lers are hardware-specifi c. The
choice depends on your phone. These tools are however essenti al to see what is
happening under the GLES hood.

 We are not going to evoke the emulator profi ler here because of its inability to emulate
programs properly at an eff ecti ve speed (especially when using GLES). But know that it exists.
Instead, we are now going to discover the interesti ng Android-NDK-Profi ler, an alternati ve
Gprof-based profi ler ported on Android by Richard Quirk (see http://quirkygba.
blogspot.com/ for more informati on). Android-NDK-Profi ler requires a device running
at least Android Gingerbread .

Project DroidBlaster_Part8-3 can be used as a starti ng point for
this part. The resulti ng project is provided with this book under
the name DroidBlaster_Part11.

Time for action – running GProf
 Let's try to profi le our own applicati on code:

1. Open a browser window and navigate to the Android-NDK-Profi ler homepage at
http://code.google.com/p/android-ndk-profiler/. Go to the Downloads
secti on and save the latest release (3.1 at the ti me of writi ng) on your computer.

2. Unzip archive in $ANDROID_NDK/sources/android-ndk-profiler. This archive
contains an Android Makefi le and two libraries: one for Arm V5 and one for Arm V7.

3. Turn Android-NDK-Profi ler into a full android module (see highlighted lines). The main
missing point is the export of prof.h fi le that we are going to include in our code.

This Makefi le uses the $TARGET_ARCH_ABI variable to select the right library
version (Arm V5/V7) automati cally according to what is defi ned in Application.
mk (APP_ABI= armeabi, armeabi-v7a). It also fi lters some opti mizati on opti ons
which could interfere with it (for Thumb as well as ARM code):

LOCAL_PATH:= $(call my-dir)

TARGET_thumb_release_CFLAGS := $(filter-out -ffunction-
sections,$(TARGET_thumb_release_CFLAGS))

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[399]

TARGET_thumb_release_CFLAGS := $(filter-out -fomit-frame-
pointer,$(TARGET_thumb_release_CFLAGS))
TARGET_CFLAGS := $(filter-out -ffunction-sections,$(TARGET_
CFLAGS))

include libandprof.a in the build
include $(CLEAR_VARS)
LOCAL_MODULE := andprof
LOCAL_SRC_FILES := $(TARGET_ARCH_ABI)/libandprof.a
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/
include $(PREBUILT_STATIC_LIBRARY)

4. Android-NDK-Profi ler can now be included in a normal nati ve library. Let's append
it to DroidBlaster_Part8-3 (you can use any other version you want).

Add the opti mizati on fi lter like done in profi ler's own Makefi le. Since compilati on
is done in thumb mode by default, keep only related lines. Then include -pg
parameter which inserts additi onal instructi on necessary to the profi ler. Finally,
include profi ler module as usual:

LOCAL_PATH := $(call my-dir)

TARGET_thumb_release_CFLAGS := $(filter-out -ffunction-
sections,$(TARGET_thumb_release_CFLAGS))
TARGET_thumb_release_CFLAGS := $(filter-out -fomit-frame-
pointer,$(TARGET_thumb_release_CFLAGS))
TARGET_CFLAGS := $(filter-out -ffunction-sections,$(TARGET_
CFLAGS))

include $(CLEAR_VARS)

LS_CPP=$(subst $(1)/,,$(wildcard $(1)/*.cpp))
LOCAL_CFLAGS := -DRAPIDXML_NO_EXCEPTIONS -pg
LOCAL_MODULE := droidblaster
LOCAL_SRC_FILES := $(call LS_CPP,$(LOCAL_PATH))
LOCAL_LDLIBS := -landroid -llog -lEGL -lGLESv1_CM -lOpenSLES

LOCAL_STATIC_LIBRARIES := android_native_app_glue png andprof

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)
$(call import-module,libpng)
$(call import-module,android-ndk-profiler)

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[400]

5. To run the profi ler, we need to include a profi ler start up and shut down functi on
in the code. Open jni/Main.cpp and insert them at the beginning and end
of android_main(). Set sample frequency to 6000 thanks to a predefi ned
environment variable CPUPROFILE_FREQUENCY:

...
#include <cstdlib>
#include <prof.h>

void android_main(struct android_app* pApplication)
{
 setenv("CPUPROFILE_FREQUENCY", "60000", 1);
 monstartup("droidblaster.so");

 // Run game services and event loop.
 ...
 lEventLoop.run(&lDroidBlaster, &lInputService);

 moncleanup();
}

6. Finally, allow applicati on to write on a storage in AndroidManifest.xml:

<?xml xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.packtpub.droidblaster" android:versionCode="1"
 android:versionName="1.0">
 ...
 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>
</manifest>

7. Recompile DroidBlaster project. It now includes all the necessary instructi ons
to start profi ler and generate profi ling informati on.

8. Run project on a device. Log messages are generated between profi ler startup
and shutdown. Make sure applicati on completely dies by pressing the back butt on,
a pause being not suffi cient:

INFO/threaded_app(3553): Start: 0x97270
INFO/PROFILING(3553): Profile droidblaster.so 80400000-8043d000: 0
INFO/PROFILING(3553): 0: parent: carrying on
INFO/PACKT(3553): Creating GraphicsService
…

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[401]

INFO/PACKT(3553): Exiting event loop
INFO/PROFILING(3553): parent: moncleanup called
INFO/PROFILING(3553): 1: parent: done profiling
INFO/PROFILING(3553): writing gmon.out
INFO/PROFILING(3598): child: finished monitoring
INFO/PACKT(3553): Destructing DroidBlaster

9. Aft er applicati on is terminated, retrieve fi le gmon.out generated in the /sdcard
folder of your device (depending on your device, storage may be mounted in
another directory) and save it in your project directory. Do not forget to acti vate
USB Mass Storage mode to see fi les from your computer.

10. From a terminal window located in your project directory where gmon.out
is saved, open a terminal and run gprof analyser located beside NDK ARM
toolchain binaries:

$ ANDROID_NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/
linux-x86/bin/arm-linux-androideabi-gprof obj/local/armeabi/
libdroidblaster.so

 This command generates a textual output that you can redirect to a fi le. It contains
all profi ling results. The fi rst part (fl at profi le) is the consolidated result with top
functi ons which seem to take ti me. The second part is the raw index from which the
fi rst part is calculated:

Flat profile:

Each sample counts as 1.66667e-05 seconds.

 % cumulative self self total

 time seconds seconds calls us/call us/call name

 18.64 0.00 0.00 png_read_
filter_row

 13.56 0.00 0.00 15847 0.01 0.02 packt::Graph
icsService::update()

 10.17 0.00 0.00 15847 0.01 0.01 packt::Graph
icsSprite::draw(float)

 10.17 0.00 0.00 1 100.00 566.67
packt::EventLoop::run(...)

 8.47 0.00 0.00 15847 0.01 0.03
dbs::DroidBlaster::onStep()

 5.08 0.00 0.00 15847 0.00 0.00
packt::GraphicsTileMap::draw()

...

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[402]

index % time self children called name

 <spontaneous>

[1] 57.6 0.00 0.00 android_main [1]

 0.00 0.00 1/1
packt::EventLoop::run(...) [2]

 0.00 0.00 1/1 packt::EventLoop:
:EventLoop(android_app*) [469]

 0.00 0.00 1/1 packt::Sensor::Se
nsor(packt::EventLoop&, int) [466]

 0.00 0.00 1/1 packt::TimeServic
e::TimeService() [433]

 0.00 0.00 1/1 packt::GraphicsSe
rvice::GraphicsService(...) [456]

...

What just happened?
 We have compiled Android-NDK-Profi ler project as an NDK module and appended it to our
own project. We turned profi ling on with the help of two exported methods monstartup()
and moncleanup() . The profi ling result is writt en to gmon.out fi le on the SD Card (thus
requiring write access) that can be parsed by the NDK gprof uti lity .

The output fi le contains a summary for each functi on hit by the sampler: the fl at profi le.
More specifi cally, it indicates the following:

 index: This identi fi es an entry in the index computed from and writt en aft er the
fl at profi le.

 % time: This represents the fragment of ti me spent in the functi on compared to
the total program executi on ti mes.

 cumulative seconds: This is the accumulated total ti me spent in the functi on
and all the functi on above in the table (using self seconds).

 self seconds: This is the accumulated total ti me spent in the functi on itself
over its multi ple executi on.

 calls: This represents the total number of calls to a functi on. This is the only
informati on which is really accurate.

 self s/call: This is the average ti me spent in one executi on of the functi on.
This column depends on sample hits and is not reliable.

 total s/call: This is the same as self s/call but cumulated with the ti me
spent in sub-functi ons too. This column is also depends on sample hits.

Note that functi ons in which no apparent ti me is spent (which does not mean they are
never called) are not menti oned unless -z is appended to command-line opti ons.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[403]

How it works
 To profi le a piece code, GCC compiler instruments your code when opti on -pg is
appended to compilati on opti ons. Instrumentati on relies on a routi ne named mcount()
(more formerly __gnu_mcount_nc()) which is inserted at the beginning of each functi on
to gather informati on about its caller and compute call count indicator. The role of
Android-NDK-Profi ler here is to implement this routi ne which is not provided by the
Android NDK.

More advanced profi ling informati on is extracted by sampling the PC counter at constant
intervals (100hz by default), in order to detect which functi on the program is currently
running (and derive the call stack). From a theoreti cal point of view, the more a functi on
takes ti me to run, the bigger is the probability that a sample hits it.

To do so, Android-NDK-Profi ler creates a separate thread to collect ti ming informati on
and a new fork process to interrupt nati ve code and record samples. To do so, it requires
the ability to att ach to a parent process which only works from Android 2.3 Gingerbread.
Thus, if you see the following message in Android logs, profi ling informati on will not get
collected accurately:

INFO/PROFILING(3588): child: could not attach 3584

GProf is a mature (not to say anti c) tool which has limitati ons. First, GProf instrumentati on
is intrusive. It aff ects performance and potenti ally cache usage which result in perturbati ons.
Moreover, it does not measure ti me spent in I/O which is oft en a good place to look for
bott lenecks and does not handle recursion. Finally, because it uses sampling and makes
some assumpti on about code (for example, a functi on is assumed to use more or less the
same ti me to run for each call), GProf does not give very accurate results and needs many
samples to increase accuracy. This makes it diffi cult to analyze results properly, when they
are not misleading.

Although it is far from perfect, GProf is sti ll easy to set up and can be a good start in profi ling.

ARM, thumb, and NEON
Compiled nati ve C/C++ code on current Android ARM devices follows an Applicati on Binary
Interface (ABI). An ABI specifi es the binary code format (instructi on set, calling conventi ons,
and so on). GCC translates code into this binary format. ABIs are thus strongly related to
processors. The target ABI can be selected in the Application.mk fi le with the property
APP_ABI. There exist four main ABIs supported on Android:

 thumb : This is the default opti on which should be compati ble with all ARM devices.
Thumb is a special instructi on set which encodes instructi ons on 16-bit instead of 32
to improve code size (useful for devices with constrained memory). The instructi on
set is severely restricted compared to ArmEABI.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Debugging and Troubleshooti ng

[404]

 armeabi (Or Arm v5): This should run on all ARM devices. Instructi ons are encoded
on 32-bit but may be more concise than Thumb code. Arm v5 does not support
advanced extensions like fl oati ng point accelerati on and is thus slower than Arm v7.

 armeabi-v7a : This supports extensions such as Thumb-2 (similar to Thumb but with
additi onal 32-bit instructi ons) and VFP plus some opti onal extensions such as NEON.
Code compiled for Arm V7 will not run on Arm V5 processors.

 x86 : This is for PC-like architectures (that is, Intel/AMD). There is no offi cial
device that existed at the ti me this book was writt en but an unoffi cial open
source initi ati ve exists.

It is possible to compile code, for example, for Arm V5 and V7 at the same ti me, the most
appropriate binaries are selected at installati on ti me.

Android provides a cpu-features.h API (with android_
getCpuFamily() and android_getCpuFeatures()
methods) to detect available features on the host device at
runti me. It helps in detecti ng the CPU (ARM, X86) and its
capabiliti es (ArmV7 support, NEON, VFP).

 Performance is one of the main criteria to develop with the Android NDK. To achieve this,
ARM created a SIMD instructi on set (acronym Single Instructi on Multi ple Data, that is, process
several data in parallel with one instructi on) called NEON which has been introduced along
with the VFP (the fl oati ng point accelerated unit).

NEON is not available on all chips (for example, Nvidia Tegra 2 does not support it) but is
quite popular in intensive multi media applicati on. They are also a good way to compensate
the weak VFP unit of some processors (for example, Cortex-A8).

NEON code can be writt en in a separate assembler fi le, in a
dedicated asm volatile block with assembler instructi ons or
in a C/C++ fi le or as intrinsics (NEON instructi ons encapsulated in a
GCC C routi ne). Intrinsics should be used with much care as GCC is
oft en unable to generate effi cient machine code (or requires lots of
tricky hints). Writi ng real assembler code is generally advised.

 NEON and modern processors are not easy to master. The Internet is full of examples to get
inspirati on from. For example, have a look at code.google.com/p/math-neon/ for an
example of math library implemented with NEON. Reference technical documentati on can
be found on the ARM website at http://infocenter.arm.com/.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Chapter 11

[405]

Summary
In this last chapter, we have seen advanced techniques to troubleshoot bugs and performance
issues. More specifi cally, we have debugged our code with the nati ve code debugger, which is
slow and complex to set up but is a real life saver.

We have also executed NDK Arm uti liti es to decipher crash dumps. They are the ulti mate
soluti on when a crash already occurred.

Finally, we have profi led our code to analyze performances with GProf. This soluti on is
limited but can give an interesti ng overview.

With these tools in hand, you are now ready to venture out into the NDK jungle. And if
you are adventurous, you can dive head fi rst in ARM assembler to improve performances
drasti cally . However, beware this is useful only when targeti ng the right pieces of code
(the famous 20%!). Do not forget that opti mizing a bad algorithm will never make it good,
and a good algorithm even without opti mizati on can make a huge diff erence.

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/android-ndk-beginners-guide/book

Where to buy this book
You can buy Android NDK Beginner's Guide from the Packt Publishing website:

http://www.packtpub.com/android-ndk-beginners-guide/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/android-ndk-beginners-guide/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/android-ndk-beginners-guide/book

